

August 29, 2018

Mr. Chuck Come Warner Village Water District 55 West Joppa Road P.O. Box 252 Warner, New Hampshire 03278

Dear Mr. Come:

Enclosed, please find a copy of our report evaluating the toxicity of an effluent sample collected from the Warner Village, New Hampshire Wastewater Treatment Facility during July 2018. Acute toxicity was evaluated using the freshwater species, *Ceriodaphnia dubia* and *Pimephales promelas*.

Please do not hesitate to call me should you have any questions regarding the report.

Sincerely,

EnviroSystems, Incorporated

Lisa Francisco Project Manager

Enclosure

WET Test Report Certification Report Number 30901-18-07 One (1) Copy + email

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION

Permittee Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on:	
	Authorized Signature
	Print or Type Name
	The Warner Village Water District
	Print or Type the Permittee's Name
	NH0100498
J.	Type or Print the NPDES Permit No.

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION (Bioassay Laboratory)

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on: August 29, 2018

Kirk Cram

Laboratory Director - EnviroSystems, Inc.

TOXICOLOGICAL EVALUATION OF A TREATED MUNICIPAL EFFLUENT BIOMONITORING SUPPORT FOR A NPDES PERMIT: July 2018

Warner Village Wastewater Treatment Facility
Warner, New Hampshire
NPDES Permit Number NH0100498

Prepared For:

Warner Village Water District 55 West Joppa Road P.O. Box 252 Warner, New Hampshire 03278

Prepared By:

EnviroSystems, Incorporated One Lafayette Road Hampton, New Hampshire 03842

July 2018 Reference Number: WarnerVillage30901-18-07

STUDY NUMBER 30901

EXECUTIVE SUMMARY

The following summarizes the results of 48 hour acute exposure bioassays performed during July 2018 to support the NPDES biomonitoring requirements of the Warner Village, New Hampshire Wastewater Treatment Facility. Acute assays were completed using the freshwater species, *Ceriodaphnia dubia* and *Pimephales promelas*.

C. dubia, cultured at ESI, were <24 hours old juveniles released within 8 hours of one another. *P. promelas*, supplied by Aquatic Research Organisms, Inc. of Hampton, NH, were 9 days old at the start of the test. Dilution water was receiving water collected from the Warner River upstream of the discharge. Samples were received under chain of custody in good order. All sample receipt, test conditions and control endpoints were within protocol specifications, except where otherwise noted.

The results presented in this report relate only to the samples described on the chain(s) of custody and sample receipt log(s), and are intended to be used only by the submitter. Results from the acute exposure assays and their relationship to permit limits are summarized in the following matrix.

Acute Toxicity Evaluation

Species	Exposure	LC-50	A-NOEC	Permit Limit (LC-50)	Effluent Meets Permit Limit	Assay Meets Protocol Limits
Ceriodaphnia dubia	48 Hours	>100%	NC	100%	Yes	Yes
Pimephales promelas	48 Hours	>100%	NC	100%	Yes	Yes

COMMENTS:

NC = Not Calculated.

TOXICOLOGICAL EVALUATION OF A TREATED MUNICIPAL EFFLUENT BIOMONITORING SUPPORT FOR A NPDES PERMIT: July 2018

Warner Village Wastewater Treatment Facility

Warner, New Hampshire
NPDFS Permit Number NH0100498

1.0 INTRODUCTION

This report presents the results of toxicity tests completed on a composite effluent sample collected from the Warner Village, New Hampshire Wastewater Treatment Facility (Warner Village WWTF). Testing was based on programs and protocols developed by the US EPA (2002), with exceptions as noted by US EPA Region I (2011), and involved conducting 48 hour acute toxicity tests with the freshwater species, *Ceriodaphnia dubia* and *Pimephales promelas*. Testing was performed at EnviroSystems, Incorporated (ESI), Hampton, New Hampshire in accordance with the provisions of TNI Standards (2009).

Acute toxicity tests involve preparing a series of concentrations by diluting effluent with control water. Groups of test animals are exposed to each concentration and a control for a specified period. In acute tests, mortality data for each concentration are used to calculate the median lethal concentration, or LC-50, defined as the effluent concentration that kills half of the test animals. Samples with high LC-50 values are less likely to cause significant environmental impacts. The acute no observed effect concentration (A-NOEC) provides information on the effluent concentration having minimal acute effects in the environment and is defined as the highest tested effluent concentration that causes no significant mortality.

2.0 MATERIALS AND METHODS

2.1 General Methods

Toxicological and analytical protocols used in this program follow procedures primarily designed to provide standard approaches for the evaluation of toxicological effects of discharges on aquatic organisms (US EPA 2002), and for the analysis of water samples (APHA 2012). See Section 4.0 for a list of references.

2.2 Test Species

C. dubia were maintained in laboratory water at 25±1°C with a photoperiod of 16:8 hours light:dark. Cultures are fed daily with a yeast/trout chow/Cerophyll or alfalfa leaves (YTC) mixture supplemented with Pseudokirchneriella subcapitata (algae) (US EPA 2002). Adults on a brood board were isolated 24 hours prior to test start and allowed to reproduce for 8 hours.

P. promelas were acclimated to approximate test conditions prior to use in the assay. Organisms were transferred to test chambers using an inverted glass pipet, minimizing the amount of water added to test solutions. Cultures were fed newly hatched *Artemia* nauplii until test start. Twenty control fish were weighed during the test to confirm loading rates. The loading rate was below the maximum 0.4 g/L recommended for assays conducted at 25°C. Fish weights and loading calculations are included in the data appendix.

2.3 Effluent, Receiving Water and Laboratory Water

Effluent and receiving water collection information is provided in Table 1. Samples were received at 0-6°C as per 40 CFR §136.3 unless otherwise noted, stored at 4±2°C and warmed to 25±1°C prior to preparing test solutions. Laboratory water was synthetic reconstituted water prepared at ESI according to protocol (US EPA 2002). This water has been used to successfully culture freshwater organisms since 1992.

Total residual chlorine (TRC) was measured by amperometric titration (MDL $0.02 \, \text{mg/L}$) in the effluent samples prior to use in the assays. Samples with $\geq 0.02 \, \text{mg/L}$ TRC were dechlorinated using sodium thiosulfate (US EPA 2002) and a control treatment using laboratory water adjusted with the same amount of sodium thiosulfate used to dechlorinate the effluent was run concurrently with the assay. If sample pH measured <6.0 SU or >9.0 SU, samples were adjusted using sodium hydroxide or hydrochloric acid,

respectively, and a control treatment using laboratory water adjusted with the same amount of either compound used to modify sample pH was run concurrently with the assay. When applicable, data from sodium thiosulfate and/or pH adjusted laboratory control treatments can be found in Appendix A.

2.4 Acute Exposure Bioassays

The 48 hour static acute assays were conducted at 25±1°C with a photoperiod of 16:8 hours light:dark. Test concentrations were 100% (undiluted), 50%, 25%, 12.5%, and 6.25% effluent. Daphnids were maintained in 30 mL test chambers with approximately 25 mL of test solution in each of 4 replicates with 5 organisms/replicate. Replicates in the *C. dubia* assay were not randomized; rather, test organisms were derived from a pool of mixed organisms recovered from ESI's culture the morning of testing. All organisms used were recovered from the same type of culture water. Minnows were maintained in 250 mL glass beakers with 200 mL of test solution in each of 2 replicates with 10 organisms/replicate. Replicates were not randomized during testing; rather, organisms were added randomly at test initiation by replicate across test solutions in an alternating fashion (alternating allocation).

Survival was recorded daily in all test replicates of both assays. A fifth replicate in the daphnid assay was included as a surrogate test chamber to obtain daily water qualities without disturbing the test animals, and was treated the same as actual test chambers with the addition of animals and food, but was not used to determine endpoint data. Dissolved oxygen and pH were measured daily, and specific conductivity was measured at the start of the daphnid assay. Dissolved oxygen was measured daily in all replicates and pH was measured daily in one replicate of each minnow test treatment; temperature was measured daily in one replicate of the laboratory water control. Specific conductivity was measured in one replicate of each test concentration at the start of the minnow assay.

2.5 Data Analysis

Data analysis involved, as required, determination of LC-50 values using CETIS™ v1.9.3.0, Comprehensive Environmental Toxicity Information System, software. The program computes LC-50 values using the Spearman-Karber and Probit methods following protocol guidelines. If survival in the highest test concentration was >50%, LC-50 values were obtained by direct observation of the raw data. As needed, the A-NOEC was determined as the highest test concentration that caused no significant mortality.

2.6 Quality Control

As part of the laboratory quality control program, reference toxicant evaluations are completed on a regular basis for each test species. These results provide relative health and response data and allow for comparison with historic data sets. See Table 2 for details.

3.0 RESULTS AND DISCUSSION

Results of the acute toxicity tests completed using *C. dubia* and *P. promelas* are summarized in Table 3. Table 4 contains effluent and diluent characteristics. US EPA Region I Attachment F toxicity test summary sheets are included after the tables. Support data, including copies of laboratory bench sheets, are provided in Appendix A.

Minimum test acceptability criteria require ≥90% survival in the control concentrations. Achievement of these results indicates that healthy test organisms were used and that the dilution water had no significant adverse impact on the outcome of the assay. See the Executive Summary and Table 3 for test acceptability.

4.0 LITERATURE CITED

40 CFR §136.3. Code of Federal Regulations (CFR), Protection of the Environment (Title 40), Guidelines Establishing Test Procedures for the Analysis of Pollutants (Part 136), Identification of Test Procedures (sub-part 3), Table II-Required Containers, Preservation Techniques, and Holding Times.

APHA. 2012. Standard Methods for the Examination of Water and Wastewater, 22nd Edition. Washington D.C.

The NELAC Institute (TNI). 2009. Environmental Laboratory Sector, Volume 1: Management and Technical Requirements for Laboratories Performing Environmental Analysis (TNI Standard). EL-V1-2009.

- US EPA. 2002. *Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms*. Fifth Edition. EPA-821-R-02-012.
- US EPA Region I. 2011. *US EPA Region 1 Freshwater Acute Toxicity Test Procedure and Protocol.* US EPA Region I Office, Boston, Massachusetts. February 28, 2011.

TABLE 1. Summary of Sample Collection Information.

Warner Village WWTF Effluent Biomonitoring Evaluation. July 2018.

		Collec	tion	Recei		
Sample Description	Туре	Date	Time	Date	Time	Arrival Temp °C
Effluent	Comp	07/24/18	0805	07/25/18	1125	6

TABLE 2. Summary of Reference Toxicant Data.

Warner Village WWTF Effluent Biomonitoring Evaluation. July 2018.

Date	Endpoint		Endpoint		Value	Historic Mean/ Central Tendency	Acceptable Range	Reference Toxicant
C. dubia 07/05/18	Survival	LC-50	19.0	23.4	3.8 - 43.0	SDS (mg/L)		
P. promelas 07/05/18	Survival	LC-50	31.3	34.3	24.0 - 44.6	SDS (mg/L)		

Means and Acceptable Ranges based on the most recent 20 reference toxicant assays.

TABLE 3. Summary of Acute Evaluation Results.

Warner Village WWTF Effluent Biomonitoring Evaluation. July 2018.

Species	Exposure	Lab	RW	6.25%	12.5%	25%	50%	100%
C. dubia	48 hours	95%	95%	100%	100%	100%	100%	95%
P. promelas	48 hours	100%	100%	100%	100%	100%	100%	100%

LC-50 and A-NOEC Results										
Species	Exposure	Spearman- Karber	Probit	Direct Observation	A-NOEC					
C. dubia	48 Hours	NC	NC	>100%	NC					
P. promelas	48 Hours	NC	NC	>100%	NC					

COMMENTS:

RW = Receiving Water; used as the diluent.

NC = Not Calculated.

Summary of Effluent and Diluent Characteristics. TABLE 4. Warner Village WWTF Effluent Biomonitoring Evaluation. July 2018.

PARAMETER	UNIT	EFFLUENT	RECEIVING WATER
Specific Conductivity	µmhos/cm	676	116
рН	SU	6.90	6.95
Total Residual Chlorine	mg/L	<0.02	-
Alkalinity	mg/L	34 ^b	13 ^b
Hardness	mg/L	88	15
Total Solids	mg/L	470	90
Total Suspended Solids	mg/L	<2 ^a	2.8
Total Dissolved Solids	mg/L	430	84
Ammonia	mg/L	<0.1	<0.1
Total Organic Carbon	mg/L	6.3	4.4
Aluminum, Total	mg/L	0.05	0.02
Cadmium, Total	mg/L	<0.0003	<0.0003
Calcium, Total	mg/L	4.46	20.9
Chromium, Total	mg/L	<0.001	<0.001
Copper, Total	mg/L	0.0012	0.016
Lead, Total	mg/L	0.0003	0.0007
Magnesium, Total	mg/L	0.78	8.33
Nickel, Total	mg/L	0.0012	0.0052
Zinc, Total	mg/L	0.0037	0.066

COMMENTS:

Additional water quality and chemistry support data are provided in Appendix A. ^a TSS filter residue below or exceeds method requirement. Result may be used with due consideration

^b Sample over recommended holding time. Result may be unusable for regulatory compliance purposes.

TOXICITY TEST SUMMARY SHEET

FACILITY NAME:	Warner Village WWTF	TEST START DATE:	07/25/18			
NPDES PERMIT NO.:	NH0100498	TEST END DATE:	07/27/18			
TEST TYPE	TEST SPECIES Pimephales promelas X_Ceriodaphnia dubiaDaphnia pulexAmericamysis bahiaCyprinodon variegatusMenidia beryllinaArbacia punctulata	SAMPLE TYPE Prechlorinated Dechlorinated Chlorine Spiked in Lab Chlorinated on Site Unchlorinated X No Detectable Chlorine	SAMPLE METHOD Grab X Composite Flow-thru Other			
DILUTION WATER:						
	llected at a point upstream or aw nation; Receiving Water Name: '		m toxicity or other			
Alternate surface w	ater of known quality and hardne ceiving Water Name:		racteristics of the			
Artificial sea salts mDeionized water anOther EFFLUENT SAMPLING DA EFFLUENT CONCENTRA Permit Limit Concentration:	ATES: <u>07/24/18</u> TIONS TESTED (%): 6.25%,	12.5%, 25%, 50%, 100%	_			
Was the effluent salinity adj	iusted? <u>No</u> If yes, t	to what level?	_ppt			
REFERENCE TOXICANT	TEST DATE: 07/05/18 LC	-50: <u>19.0</u> mg/L Sodium Do	odecyl Sulfate			
	PERMIT LIMITS AND Test Acceptable					
Mean Diluent Control Sur	vival: <u>95</u> %					
LIMITS		RESULTS				
LC-50: <u>100</u> %		LC-50 Upper Limit:	>100 % %			
A-NOEC:%		Lower Limit: % Method: Direct Observa				
C-NOEC:%		A-NOEC C-NOEC	-% - %			
IC %		IC %				

TOXICITY TEST SUMMARY SHEET

FACILITY NAME:	Warner Village WWTF	TEST START DATE:	07/25/18		
NPDES PERMIT NO.:	NH0100498	TEST END DATE:	07/27/18		
TEST TYPE X Acute Chronic Modified Chronic (Reporting Acute Values) 24 Hour Screen	TEST SPECIES X Pimephales promelas Ceriodaphnia dubia Daphnia pulex Americamysis bahia Cyprinodon variegatus Menidia beryllina Arbacia punctulata	SAMPLE TYPE Prechlorinated Dechlorinated Chlorine Spiked in Lat Chlorinated on Site Unchlorinated X No Detectable Chlorin	Other		
DILUTION WATER:					
	ollected at a point upstream or av		n toxicity or other		
	ination; Receiving Water Name:		antoriotica of the		
	vater of known quality and hardn eceiving Water Name:	ess, to generally reflect the chara	acteristics of the		
Artificial sea salts Deionized water an Other EFFLUENT SAMPLING D EFFLUENT CONCENTRA Permit Limit Concentration	TIONS TESTED (%): 6.259 : 100 %				
Was the effluent salinity ac	ljusted? <u>NO</u> If yes	s, to what level?	ppt		
REFERENCE TOXICANT	TEST DATE: 07/05/18 I	_C-50: <u>31.3</u> mg/L Sodium [Dodecyl Sulfate		
	PERMIT LIMITS AND Test Acceptab				
Mean Diluent Control Su	rvival: <u>100</u> %				
LIMITS		RESULTS			
LC-50: <u>100</u> %		LC-50 Upper Limit:	<u>>100</u> %		
A-NOEC:%		Lower Limit: % Method: Direct Observ			
C-NOEC:%		A-NOEC C-NOEC	Direct Observation - % - %		
IC %		IC-	- %		

APPENDIX A

RAW DATA

STATISTICAL SUPPORT

Contents	Number of Pages
Methods Used in NPDES Permit Biomonitoring Testing	1
C. dubia Daily Observation Bench Sheet	1
P. promelas Daily Observation Bench Sheet	1
P. promelas Organism Wet Weight Bench Sheet	1
P. promelas Organism Culture Data	1
Preparation of Dilutions and Record of Meters Used	2
Analytical Chemistry Data	1
Sample Receipt Record	1
Chains of Custody	2
Assay Review Checklist	1
Total Appendix Pages	12

METHODS USED IN NPDES PERMIT BIOMONITORING TESTING

Parameter	Method
Acute Exposure Bioassays:	
Ceriodaphnia dubia	EPA-821-R-02-012 2002.0
Daphnia pulex	EPA-821-R-02-012 2021.0
Pimephales promelas	EPA-821-R-02-012 2000.0
Americamysis bahia	EPA-821-R-02-012 2007.0
Menidia beryllina	EPA-821-R-02-012 2006.0
Cyprinodon variegatus	EPA-821-R-02-012 2004.0
Chronic Exposure Bioassays:	
Ceriodaphnia dubia	EPA-821-R-02-013 1002.0
Pimephales promelas	EPA-821-R-02-013 1000.0
Cyprinodon variegatus	EPA-821-R-02-014 1004.0
Menidia beryllina	EPA-821-R-02-014 1006.0
Arbacia punctulata	EPA-821-R-02-014 1008.0
Champia parvula	EPA-821-R-02-014 1009.0
Trace Metals:	
Trace Metals	EPA 200.8/SW 6020, EPA 245.7
Hardness	EPA SW 846 3rd Ed. 6010
Wet Chemistries:	
Alkalinity	EPA 310.2
Chlorine, Residual	Standard Methods 22 nd Edition - Method 4500-CI D
Total Organic Carbon	Standard Methods 22 nd Edition - Method 5310 C
Specific Conductance	Standard Methods 22 nd Edition - Method 2510 B
Nitrogen - Ammonia	Standard Methods $22^{\rm nd}$ Edition - Method 4500-NH $_3$ G
рН	Standard Methods 22 nd Edition - Method 4500-H+ B
Solids, Total (TS)	Standard Methods 22 nd Edition - Method 2540 B
Solids, Total Dissolved (TDS)	Standard Methods 22 nd Edition - Method 2540 C
Solids, Total Suspended (TSS)	Standard Methods 22 nd Edition - Method 2540 D
Dissolved Oxygen	Standard Methods 22 nd Edition - Method 4500-O G

Please visit our web site at www.envirosystems.com for a copy of our accreditations and state certifications.

DAPHNID ACUTE DEFINITIVE ASSAY

STUDY	Y: 30901 CLIENT: Warner Village Water District SAMPLE: Effluent				it		DILUENT: RW					
SPECIES: C. dubia			SOURC	SOURCE: OOCHESIOT						24 Hours		
			SURVIV	AL		DO (mg/			pH (SU	o allegationes (games	S/C	SAMPLE
CONC	REP	0	24	48	0	24	48	0	24	48	(µmhos/cm)	CHEMISTRIES
	Surr.	5	5	5	8.5	8.8	8.3	1.57	8.04	1.97	212	See P.
	Α	5	5	5				1-27-5	1001	1.1		promelas Sheet for Chemistry
MSR	В	5	5	5								Information.
	С	5	5	5				1		17:25	1 () () () () ()	
	D	5	5	ų .	S. control							
	Surr.	5	5	5	8.590	8.8	8.3	4.95	7.73	7.80	116	
	A	5	5	5								
RW	В	5	5	4						A STATE OF THE STA		
	С	5	5	5								
·	D	5	5	5								de la companya de la
	Surr.	5	5	5	8.7	8.8	8.3	6.81	7.74	7.75	152	Batch Used
	A	5	5	5		3-900			1. 1. 3.			Selenastrum:
6.25%	В	5	5	5								A-518G
	С	5	5	5								YCT: FI32
	D	5	5	5							72 (E) (E)	
	Surr.	5	5	5	8.7	8.8	8.4	6.78	7.75	7.78	182	
40 504	A	5	5	5								
12.5%	В	5	5	5								
	C	5	5	5								
	D	5		5								
	Surr.	5	5	5	8.7	89	8.4	6.82	7.78	7,79	253	
25%	A B	5	5	5								
25%	С	5	5	5	7.5			14,250, 257				
	D	<u>5</u>	5	5 5								
	Surr.	<u> </u>	5		3 c en	5.			1			
	A A	5	5	5	8.8	8.9	8.4	6.88	7.80	7.82	367	
50%	В	<u>5</u> 5	5	5	Professional Control					1		
0070	С	5	5	5				Sec.				
	D	5	5	5								
	Surr.	5	5	5	9.0	2.5	0.6		 			
	A	5	5	4	1.0	8.8	8.5	<u>4.90</u>	7.87	7.91	676	
100%	В	5	5	5								
	C	5	5	5				30				
	D	5	5	5								
INC TEM		26	26		200							
DATE		7125/18	A-1	26	nnelia	07/2/10	-12-1-0					
TIME		1555	1445	1	7125/18			*				
INITIALS	- -	1933 1933	GRS	1420 MW	1315 M/1	1105 MS	1230					
11 11 11 11 CC		INV	UN3	MINA	MW	1.17	MW					

ACUTE BIOASSAY DATA SUMMARY

STUDY 30901	106			Bring Chri	, v	000			1				tagers admicrosolitates and so		
	-			DILLE SILLING. A- 4 17.4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.71			"AS REC	EIVED" EI	FLUENT	AND DILL	"AS RECEIVED" EFFLUENT AND DILUENT CHEMISTRIES	MISTRIES	
CLIENT: Warner Village Water District	rner Villa	age Water	District	TEST ORGANISM:	GANISM	P. promelas	elas		METALS	10C	ALK	HAR	AMM	Solids	TRC
SAMPLE: Effluent	fluent			ORGANIS	SM SUPP	ORGANISM SUPPLIER/BATCH/AGE:	CH/AGE:	Effluent	00/25	OB TEST	600	005	900	800/100	<0.02
DILUENT: Receiving Water (RW)	eceiving	Water (R)	W)	See Organ	ism Cultur	e Sheet		Diluent	oıj	210	013	h10	015	016/017	
CONC	REP		SURVIVAL	٩٢	DISS	DISSOLVED OXYGEN (mg/L)	XYGEN		PH (SU)		H	TEMPERATURE (°C)	URE	S/C (mylos/cm)	C s/cm)
		0	24	48	0	24	48	0	24	48	0	24	48	0	
	A	0)	01	10	8.5	12	17.9	7.57	49.2	7.59	7H	23	7.0	2.0	
MSK	В	0)	0	0)	8.5	92	7.8						-	J	
í	A	01	10	10	9.0	7.4	7.8	6.95	7.23	1.37	2,0	(S)	7.		
ΚW	В	0)	10	10	<u>م</u> . ه	7.5	1.7) and		9	
i c	A	01	0	10	8.7	52	1-1-	(p. Q.)	71.17	7.21	76	212410	7.4	5	
6.25%	В	0	Q;	01	8.1	57	1.8						ī	3	
, c	∢	0)	01	01	1.8	h ' <u>L</u>	7.6	6.79	7.24	7.13	972		73	192	
12.3%	В		0	01	8.1	h:2	7.6								
, cr	Α	01	ō	10	L.8	7.3	7.6	28.0	7.2H	7.26	26		13	753	
72%	В	0)	10	10	F.8	9.7									
7007	Α	01	0)	10	88	7.7	7.7	6.88	7.37	1.39	2.6		23	367	
9/ 00	മ	0)	01	01	8.6	7.7	7.5								
70007	A	10	0	10	9.6	7.7	7.5	_ Qb'9\	7.43	7.48	26		h2.	(n.T.C.)	
	В	10	10	21	9.0	7.7	7.3			199)	
INC TEMP (°C)	()	7C	26	92				(eig) MW	81117117	tempe	rature	valudo			
DATE		07/25/18	01/22/18	21/22/18	91 <i>15</i> 21L	8) 92110	3112711) over	looked	overtooked on "A" reps.	reps.				
TIME		5 1355 Sices orles	1430	1430	1315	1100	1220								
INITIALS		CFS	GRS	MW	MW	WS	MW								
	ŀ												The second secon		

STUDY: 30901 CLIENT: WARNER **PROJECT:** WARNER **ASSAY: PP48AD** SPECIES: P. promelas

BALANCE: Ohaus Discovery Balance Model DV215CD Serial #: 1124024313

Date / Intials:	07/25/18 LAG LAG
Rep	· · · · · · · · · · · · · · · · · · ·
1	0.00257
2	0.00674
3	0.00135
4	0.005
5	0.00322
6	0.00239
7	0.00256
8	0.00312
9	0.00379
10	0.00199
11	0.00211
12	0.00144
13	0.00244
14	0.00189
15	0.00184
16	0.00372
17	0.00169
18	0.00185
19	0.00201
20	0.00194
Mean Weight (g):	0.00268
Test Volume (L):	0.2
Loading Rate(g/L):	0.13415

Aquatic Research Organisms 09 Pp AR0072518

DATA SHEET

Į.	Organis	m History
	Specie	s - Pinepheles proneks
	Source	: Lab reared Hatchery reared Field collected
		Hatch date 7/16/18 Receipt date
		Lot number 07 12 18 FH Strain ARO
	** · *,	Brood origination EPA OH
II.	Water (Quality
	. **	Temperature 24 °C Salinity ppt D.O. <u>SAT</u> ppm
		pH 7.4 su Hardness $\approx (20)$ ppm Alkalinity $\approx (40)$ ppm
III.	Culture	Conditions
		Freshwater Saltwater Other
	14.2	Recirculating Flow through Static renewal
: :	\$. ·	DIET: Flake food × Phytoplankton Trout chow
•		Artemia x Rotifers x YCT Other Graf Diet
		Prophylactic treatments:
		Comments:
۲۷.	Shipping	g Information
		Client: $\angle SI$ # of Organisms $\angle 700^+$
		Carrier: Pilk - Op Date shipped 7/16/18
		Biologist:

PO BOX 1271 HAMPTON NH 03843-1271 (603) 926-1650 <u>AROFISH@AOL.COM</u>

PREPARATION OF DILUTIONS

STUDY: 3090 SPECIES: C. dubia & P. promelas	CLIENT: Warne	r Village Water District
Diluent:	Day: 0 Start	Eo=26.3'C
Receiving Water	Sample: E₀,	Do=26.4°C Do
Concentration %	Vol. Eff.(mls)	Final Vol.(mls)
MSR	0	500
RW	0	1
6.25%	31.25	
12.5%	62.5	
25%	125	
50% `	250	
100%	500	
INITIALS:	MW	
TIME:	1255	
DATE:	7125118	***************************************

RECORD OF METERS USED

STUDY: 3090	(CLIENT: Warner Vil	lage Water District
		C. dubia	
	Expo	osure (Hours)	
	0	24	48
Water Quality Station #	2	1	2
Initials / Date	MW 7125/18	MS 07/26/18	MW 7127/18
	P.	promelas	
NATIONAL CONTRACTOR OF THE CON	Ехро	sure (Hours)	
	0	24	48
Water Quality Station #	2	ı	2
Initials / Date	MW 7125/18	MS 07/26/17	MW 7127118

Water Quality	Station #1	Water Quality	Station #2	COMMENTS
DO meter#	MLOZ	DO meter#	MLOI	
DO probe #	160	DO probe #	T96	
pH meter#	ML02	pH meter#	MLOI	
pH probe #	163	pH probe #	158	
S/C meter#	ML02	S/C meter#	MLOI	
S/C probe #	ţ	S/C probe#	159	
Salinity meter#	MLaz	Salinity meter#	MLOI	

Report No:

30901

Project:

Warner Village

Sample ID:

Effluent Start

Water

Matrix: Sampled:

07/24/18 0804

Parameter		Result	Qualifiers	Quant Limit	Units	Date Prepared	Date of Analysis	INIT/Method/Reference
Total solids	30901-008	470		10	mg/L	07/27/18 1345	07/31/18 1010	CA /SM 2540B
Total suspended solids	30901-007	ND	J26	2	mg/L	07/27/18 1510	07/30/18 1105	CA /SM 2540D
Total dissolved solids	30901-008	430		5	mg/L	07/30/18 1520	08/03/18 1255	CA /SM 2540C
Alkalinity as CaCO3	30901-004	34	R1	2	mg/L	08/13/18 1130	08/13/18 1130	JHW/EPA 310.2
Total organic carbon	30901-003	6.3		0.4	mg/L	07/26/18	07/26/18	JHW/SM 5310 C
Ammonia-N	30901-006	ND		0.1	mg/L as N	07/31/18 1230	07/31/18 1230	JHW/SM 4500-NH3 G
Total phosphorus	30901-009	5.4		0.2	mg/L	08/09/18 1230	08/10/18 1050	CA /SM 4500-P E
Hardness as CaCO3	30901-005	88		0.3	mg/L	08/02/18 1000	08/02/18 1145	JLH/ess/SW846 3rd Ed. 6020
Aluminum, total	30901-002	0.05		0.02	mg/L	07/27/18 1030	07/30/18 1704	EG /EPA 200.8
Cadmium, total	30901-002	ND		0.0003	mg/L	07/27/18 1030	07/30/18 1704	EG /EPA 200.8
Calcium, total	30901-002	4.46		0.05	mg/L	07/27/18 1030	07/30/18 1704	EG /EPA 200.8
Chromium, total	30901-002	ND		0.001	mg/L	07/27/18 1030	07/30/18 1704	EG /EPA 200.8
Copper, total	30901-002	0.0012		0.0005	mg/L	07/27/18 1030	07/30/18 1704	EG /EPA 200.8
Lead, total	30901-002	0.0003		0.0003	mg/L	07/27/18 1030	07/30/18 1704	EG /EPA 200.8
Magnesium, total	30901-002	0.78		0.05	mg/L	07/27/18 1030	07/30/18 1704	EG /EPA 200.8
Nickel, total	30901-002	0.0012		0.001	mg/L	07/27/18 1030	07/30/18 1704	EG /EPA 200.8
Zinc, total	30901-002	0.0037		0.002	mg/L	07/27/18 1030	07/30/18 1704	EG /EPA 200.8

SDG:

Sample ID:

Receiving Water Start

Matrix:

Water

Sampled:

07/24/18 0830

Parameter		Result	Qualifiers	Quant Limit	Units	Date Prepared	Date of Analysis	INIT/Method/Reference
Total solids	30901-017	90		10	mg/L	07/27/18 1345	07/31/18 1010	CA /SM 2540B
Total suspended solids	30901-016	2.8		1	mg/L	07/27/18 1510	07/30/18 1105	CA /SM 2540D
Total dissolved solids	30901-017	84		5	mg/L	07/30/18 1520	08/03/18 1255	CA /SM 2540C
Alkalinity as CaCO3	30901-013	13	R1	2	mg/L	08/13/18 1130	08/13/18 1130	JHW/EPA 310.2
Total organic carbon	30901-012	4.4		0.4	mg/L	07/26/18	07/26/18	JHW/SM 5310 C
Ammonia-N	30901-015	ND		0.1	mg/L as N	07/31/18 1230	07/31/18 1230	JHW/SM 4500-NH3 G
Hardness as CaCO3	30901-014	15		0.3	mg/L	08/02/18 1000	08/02/18 1147	JLH/ess/SW846 3rd Ed. 6020
Aluminum, total	30901-011	0.02		0.02	mg/L	07/27/18 1030	07/30/18 1711	EG /EPA 200.8
Cadmium, total	30901-011	ND		0.0003	mg/L	07/27/18 1030	07/30/18 1711	EG /EPA 200.8
Calcium, total	30901-011	20.9		0.05	mg/L	07/27/18 1030	07/30/18 1711	EG /EPA 200.8
Chromium, total	30901-011	ND		0.001	mg/L	07/27/18 1030	07/30/18 1711	EG /EPA 200.8
Copper, total	30901-011	0.016		0.0005	mg/L	07/27/18 1030	07/30/18 1711	EG /EPA 200.8
Lead, total	30901-011	0.0007		0.0003	mg/L	07/27/18 1030	07/30/18 1711	EG /EPA 200.8
Magnesium, total	30901-011	8.33		0.05	mg/L	07/27/18 1030	07/30/18 1711	EG /EPA 200.8
Nickel, total	30901-011	0.0052		0.001	mg/L	07/27/18 1030	07/30/18 1711	EG /EPA 200.8
Zinc, total	30901-011	0.066		0.002	mg/L	07/27/18 1030	07/30/18 1711	EG /EPA 200.8

Notes:

J26 = TSS filter residue below or exceeds method requirement. Result may be used with due consideration. R1= Sample over recommended holding time. Result may be unusable for regulatory compliance purposes.

ESI

EnviroSystems, Inc.

P.O. Box 778

Hampton, NH 03842-0778

603-926-3345

fax 603-926-3521

www.envirosystems.com

SAMPLE RECEIPT AND CONDITION DOCUMENTATION

Page 1 of 1

STUDY NO:

30901

SDG No:

Project:

Warner Village

Delivered via:

ESI

Date and Time Received:

07/25/18 1125

Date and Time Logged into Lab:

07/25/18 1205

Received By:

Air bill / Way bill:

MW

Logged into Lab by:

Custody Seals intact?

MM - MM

Cooler on ice/packs: Cooler Blank Temp (C) at arrival: 5.8

Client notification/authorization: Not required

Yes

No

Air bill included in folder if received? Custody Seals present?

NA NA

A-5084

Number of COC Pages: COC Serial Number(s):

2 A1016472

NA

COC Complete:

Yes Sampled Date: Yes

Does the info on the COC match the samples? Yes Were samples received within holding time? Yes Were all samples properly labeled? Yes

Field ID complete: Yes Sampled Time: Yes Were proper sample containers used? Yes Analysis request: Yes Were samples received intact? (none broken or leaking) Yes COC Signed and dated: Yes Were sample volumes sufficient for requested analysis? Yes Were all samples received? Yes NA

Were VOC vials free of headspace? pH Test strip ID number:

				Bottle	Req'd	Verified
Field ID	Lab ID	Mx	Analysis Requested		Pres'n	Pres'n
Effluent Start	30901-001	W	CDPP48 StartSample	1x3750 P	4 C	Yes
Effluent Start	30901-002	W	Total Metals Cd,Cr,Ni,Pb,Cu,Zn,Al,Ca,Mg;	250 P	HNO3	Yes
Effluent Start	30901-003	W	TOC	1x40 G	H2SO4	Yes
Effluent Start	30901-004	W	Alk	125 P	4 C	Yes
Effluent Start	30901-005	W	Metals Hard;	125 P	HNO3	Yes
Effluent Start	30901-006	W	NH3;	125 P	H2SO4	Yes
Effluent Start	30901-007	W	TSS	1000 P	4 C	Yes
Effluent Start	30901-008	W	TS,TDS	500 P	4 C	Yes
Effluent Start	30901-009	W	TP	250mL	H2SO4	Yes
Receiving Water Start	30901-010	W	CDPP48AD StartDiluent	2x3750 P	4 C	Yes
Receiving Water Start	30901-011	W	Total Metals Cd,Cr,Ni,Pb,Cu,Zn,Al,Ca,Mg;	250 P	HNO3	Yes
Receiving Water Start	30901-012	W	TOC	1x40 G	H2SO4	Yes
Receiving Water Start	30901-013	W	Alk	125 P	4 C	Yes
Receiving Water Start	30901-014	W	Metals Hard;	125 P	HNO3	Yes
Receiving Water Start	30901-015	W	NH3;	125 P	H2SO4	Yes
Receiving Water Start	30901-016	W	TSS	1000 P	4 C	Yes
Receiving Water Start	30901-017	W	TS,TDS	500 P	4 C	Yes

Notes and qualifications:

See COC		***************************************	 	

EnviroSystems, Inc.

One Lafayette Road

P.O. Box 778

Hampton, NH 03842-0778

(603) 926-3345 fax (603) 926-3521

www.envirosystems.com

EnviroSystems, Inc. 1 Lafayette Road Hampton, NH 03842

回 S M

Voice: 603-926-3345 FAX: 603-926-3521

ESI Job No: 30901

Total Metals Cd,Cr,Ni,Pb,Cu,Zn,Al,Ca,Mg; Quote No:40382-A CDPP48 StartSample Filter Analyses Requested\ 000 Metals Hard; P.O.No: 1 TS,TDS Task: NH3; TSS ည ₹ 4 F=Done in field z z Z z z z z z z Chuck Come 5 Warner S=Solid P0107 Matrix *N*=Water Water Water Water Water Water Water Water Water Water H2S04 H2S04 Field Preser-vation HN03 HN03 H2S04 Project Manager: 4 C Address: 15 West Joppa Road P.O. Box 252 Project Number: 4 C 4 C **4** Project Name: Received By: Type (P/G/T) email CHAIN OF CUSTODY DOCUMENTATION Δ ტ ۵ ۵. ۵. 핕 Ω. ۵ ۵. Container Size (mL) (250m 3750 1000 250 125 125 125 500 6 Date: 7-25-17 Time: 9:17 ž Sampled Grab
By or composite (G/C) Address: Warner, NH 03278 5,00 3701 3/12/ 3702 STan 2015 5,02 3701 2/2~ Contact: Chuck Come Time Sampled Date: 7/ 0 20:8 205 8:05 8:05 20.50 8:05 2:35 8:05 80.70 Date Sampled 7-24-18 7-24-18 7-24-18 7.27-18 7-24-18 11-12-6 17.27.19 7-24-18 7-24-18 **Fax**: Warner Village Water District Hogeran 16.57 603-456-1891 Chuck Come Chuck Come Your Field ID: (must agree with 001 Effluent Start 003 Effluent Start 004 Effluent Start 005 Effluent Start Effluent Start 007 Effluent Start 008 Effluent Start 002 Effluent Start 009 Effluent Start Relinquished By: 51/5. container) NPDES Relinquished By: 900 Lab Number (assigned Comments: Invoice to: Report to: Client: Protocol: Voice: by lab)

4000

Sample Delivery Group No:

June 2018

Page

₹

COC Number: A1016472

ERR

ESI Job No: 30901

Voice: 603-926-3345 ESI Job No: 3090^{1} FAX: 603-926-3521	CHAIN OF CUSTODY DOCUMENTATION	uck Come Project Name: Warner	West Joppa Road P.O. Box 252 Project Number: P0107 Task: 0001	278	0 email: P.O.No: ' Quote No:40382-A		me Sampled Grab Container Field Matrix FIlter Analyses Requested\ npled By or com- No Size Type Preser- S=Solid N=Not needed Special Instructions: Container Field Matrix Filter Analyses Requested\ Container Filter Filter Analyses Requested\ Container Filter Fil	ζρο √ 2 3750 P 4 C Water	うつ タシュ 1 250 P HNO3 Water N Total Metals Cd,Cr,Ni,Pb,Cu,Zn,Al,Ca,Mg;	Sport 1 40 G H2SO4 Water N	Sior 1 125 P 4C	3つ Sypur 1 125 P HNO3 Water N Metals Hard;	3つ Sspr 1 125 P H2SO4 Water N NH3;	3D Ssp~ 1 1000 P 4C Water N TSS	30 SS 15 1 500 P 4C Water N TS,TDS		7.25-18 Time: P. 97 Received By: (30) Date: 7/25 //8 Time: 947	11.
act:				4.24 8:30 Spor	224-18 8:30 STAN	724-18 8:30 STON	7-21-18 8:30 Spm	12119 8:30 SPM	7-24-8 8:30 Stor	7-27-18 8130 815~		1.\~ [Potes 7/2 (A) Times					
EnviroSystems, Inc. 1 Lafayette Road Hampton, NH 03842		Client: Warner Village Water District Co	Report to: Chuck Come Ad	Chuck Come	Voice: 603-456-1891 Fax:	: NPDES	ber Your Field ID: (must agree with container)	010 Receiving Water Start					7. 015 Receiving Water Start	7-2 Receiving Water Start	017 Receiving Water Start		Relinquished By: Stank of Almoningon	JE 30

COC Number: A1016472

ō

June 2018

Sample Delivery Group No:

ERR

Assay Review Checklist

DATE IN:	07/25/18	STUDY#: _3090 \	
DATE DUE:	8 15 18	CLIENT: Warner Village Water District on	12:
		PROJECT:	
		ASSAY: Cd Pp TOCR @ 36 07/18	

	Project Paperwork Check for Completeness							
	Date	Initials	Comments					
Day 0	7/25/18	Imw						
Day 1	07/26/18	GRS	Daphid acute wa not filled in					
Day 2	7/27/18	MW						
Day 3								
Day 4								
Day 5								
Day 6								
Day 7								
Day 8								

Analyst Data Review		Date		ials	Comments
Chains of Custody Complete		07/28/18		G	
Sample Receipt Complete		I	i		
Organism Culture Sheet(s)					
Bench Sheets Complete (dates, times, initials, etc)	1	<u> </u>			
Water Quality Data Complete					
TRC Values & Bottle Numbers	l		J		
Daphnid Calculations Complete		1	N/	1	· · · · · · · · · · · · · · · · · · ·
Weights Reported			B(
Assay Acceptability Review	,				

Technical Report Review	Date	Initials	Comments
Statistical Analysis Complete	NIA		
Statistical Analysis Reviewed	1		
Data Acceptability Review	8/17/18	UF.	
Supporting Chemistry Report	8/27/18	Œ	
Draft Report	8/17/18	I.F	
QA Audit/Review Complete			
Final Report Reviewed	8/24/18	CS	
Final Report Printed - PDF	8/29/18	1.F	
Executive Summary / Chems Sent			
Report E-mailed / Faxed	8 29 18	1.F	
Report Logged Out / Invoice Sent	l l		
Report Scanned to Archive		\forall	

P:\GENERAL PROJECTS\FORMS\LABFORMS\\$ Assay Review Checklist.wpd